

Enhancing Cutting Productivity by utilising Pierce Detection capability

March 2018

Marking | Cutting | Welding | Micro Machining | Additive Manufacturing

What is Piercing?

Pierce Phase:

- Cutting Head is static:
 - generally in a defocused position
 - Particularly for thicker material
- Laser beam is allowed to drill through the metal:
 - as melt is formed, the pressure of the gas expels the melt

Cutting Phase:

- Focus Head moved down to cutting position
- Head is moved relative to the material
- Laser beam cuts through the metal
 - Assist gas blows melt through bottom of kerf.

Pierce Detection Systems

- Almost all flat sheet cutting processes have a large number of pierces
- All Laser Cutting Systems need some form of pierce detection to operate economically:
 - Without it, long pierce dwell times have to be programmed
 - These can be up to 3 times longer than needed:
 - Due to processing variations
 - More important as material thickness increases.

• Many commercial systems are available, but usually mean:

- Extra optical surfaces in beam path
 - particularly undesirable for multi-kW systems!
- Larger process head space
- Increased system cost.

Pierce Detect Feature

- An SPI breakthrough invention for increased productivity
- Comes as standard in redPOWER PRISM and QUBE lasers

redPOWER[®] PRISM

OEM Lasers with Efficiency & flexibility for macro

materials processing. 2kW – 6kW CW Fiber Laser

redPOWER®QUBE

Fully Featured Lasers with Power & control for cutting,

- SPI Lasers have developed a proprietary system that is integrated into existing Fiber Laser hardware and software
 - Gives added value to multi-kW Fiber Lasers using a High Power Combiner
- Ready to integrate into System controller PLC
 - A clear digital i/o signal is presented when pierce through is detected.

How does Pierce Detect work?

Not to be distributed without prior consent of SPI Lasers UK Ltd.

Slide: 6 02/10/2017 CM-F00003 – Rev 6

Back Reflection during the Piercing

Process

- The Cutting Head focuses the Laser output onto the workpiece
- Some Laser radiation undergoes Back Reflection (BR) from the workpiece
- The BR shows a characteristic ¹⁵⁰ time variant signal:
 - t1 : large BR
 - t1-t2 : laser light couples into the material forming a melt giving low unstable amount of BR
 - t2-t3: Pierce through occurs
 - t3-t4: Pierced. Low amount of BR from the material

 Typically the difference in BR from t2 to t3 is just a few Watts.

Slide: 7 02/10/2017 CM-F00003 – Rev 6

Detecting the Back Reflection signal

🖸 🛄 🛄 🚨	Pointing Rest			
400,		 System Alams Interfocks Wannings 	On Control Ok EPC Ok Pointing Ok	Local Of Of
SP-500-C	Laten Maritan Palameter	tallor Process Cycle Ealter Loga	Mandemance	
	Oxfpat Power (4010 W 640 W			
800	Output Exercise NUA			
ale also also also also mentom GPFMose Central	231C 40 C 50 C			
fem (Nil 500 Peak (Nil Content for the former sector) (Nil 500 Peak (Nil Content for the former sector) (Nil 100 Peak (Nil 100 P	Enclances Temps			

• BR light is collected by cutting head onto fiber:

- Some light is rejected by PIPA-Q patented protection system to stop damage to fiber termination
- Some travels along fiber core and cladding into laser cabinet
- Detectors in the High Power Combiner (HPC) Tray detect the BR:
 - And distinguish from outward going laser light
- Signal passed to laser control system for processing
- Laser controlled through dedicated FiberView software.

Pierce Detect Control

- FiberView software analyses the signal to produce a Pierce Detect Flag
- The flag is available on one of configurable digital outputs on the Machine Interface
- User programmable variables enable the detection point to be tailored to any process
- Signal resets at end of laser pulse:
 - · Automatically ready for next laser operation.

Restore Default Input Functions		Resto	Restore Default Output Functions		
nputs -			- Outputs		
Number	Function	Status	Number	Function	Status
0 [Jnused	- O	0 Pien	ce Detect	
1 [aser On Cycle Start	~ 0	1 Lase	er On Cycle Active	- (
2	Process Cycle Step	~	2 Rem	note Control	~ @
3 [Jnused	- 0	3 Unu	sed	- Q
4	Nam Reset	- 0	4 Unu	sed	- 0
5 [Jnused	- 0	5 Ene	rgy Warning	- 0
6 (Jnused	- 0	6 Unu	sed	- 0

Not to be distributed without prior consent of SPI Lasers UK Ltd.

in 🎔 🛅 f

Pierce Detect - pulsed operation

Pulsing the laser during piercing is common practice:

- slower but more controlled & better quality
- Pierce Detect also operates under pulsed conditions

 Set the sample time longer than laser off time between pulses.

15msecs sample time captures the pierce point

02/10/2017

Slide: 10

PierceDetect increases Productivity

Not to be distributed without prior consent of SPI Lasers UK Ltd.

Slide: 11 02/10/2017 CM-F00003 – Rev 6

Pierce Detection Productivity

Improvement

- A nested pattern of two parts on a single sheet has been modelled:
 - In total:1800 pierces/sheet
- Time to run the programme modelled with and without Pierce Detect
- Pierce detection shows a productivity gain of ~1hour day or ~35days/year
- Processing tests on Cutting System show 10-15% improvement in productivity.

Material	Pierce time (no detect)	Time saving
12mm MS O2	50sec	12%
6mm SS N2	6sec	10%
6mm AL N2	9sec	14%

Not to be distributed without prior consent of SPI Lasers UK Ltd.

in 🛩 🛅 f

Closed Loop Pierce Detect vs Open Loop Programmed Dwell Time

- Timing comparison
- 40 holes pierced
- LHS Pierce Detect signal triggers next step
- RHS Fixed dwell time of 200msecs used.

Closed Loop Pierce Detect vs Open Loop Programmed Dwell Time

Closed Loop Pierce Detect

Programmed Dwell Time

Closed Loop Pierce Detect vs Open Loop Programmed Dwell Time

- Generally, Back Reflected light causes problems during laser material processing:
 - However, it contains information about the process, which can be harnessed to improve productivity
- SPI Lasers have developed Pierce Detect, a proprietary system that is integrated into existing Fiber Laser hardware and software:
 - Giving added value to multi-kW Fiber Lasers using a High Power Combiner
- A clear digital i/o signal is presented when 'pierce through' is detected:
 - Ready to integrate into System controller PLC.

Built-in Pierce Detection - an SPI breakthrough invention for increased productivity